Sample size calculations for ROC studies: parametric robustness and Bayesian nonparametrics.

نویسندگان

  • Dunlei Cheng
  • Adam J Branscum
  • Wesley O Johnson
چکیده

Methods for sample size calculations in ROC studies often assume independent normal distributions for test scores among the diseased and nondiseased populations. We consider sample size requirements under the default two-group normal model when the data distribution for the diseased population is either skewed or multimodal. For these two common scenarios we investigate the potential for robustness of calculated sample sizes under the mis-specified normal model and we compare to sample sizes calculated under a more flexible nonparametric Dirichlet process mixture model. We also highlight the utility of flexible models for ROC data analysis and their importance to study design. When nonstandard distributional shapes are anticipated, our Bayesian nonparametric approach allows investigators to determine a sample size based on the use of more appropriate distributional assumptions than are generally applied. The method also provides researchers a tool to conduct a sensitivity analysis to sample size calculations that are based on a two-group normal model. We extend the proposed approach to comparative studies involving two continuous tests. Our simulation-based procedure is implemented using the WinBUGS and R software packages and example code is made available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

708 , Spring 2014 19 : Bayesian Nonparametrics : Dirichlet Processes

In parametric modeling, it is assumed that data can be represented by models using a fixed, finite number of parameters. Examples of parametric models include clusters of K Gaussians and polynomial regression models. In many problems, determining the number of parameters a priori is difficult; for example, selecting the number of clusters in a cluster model, the number of segments in an image s...

متن کامل

A mixed Bayesian/Frequentist approach in sample size determination problem for clinical trials

In this paper we introduce a stochastic optimization method based ona mixed Bayesian/frequentist approach to a sample size determinationproblem in a clinical trial. The data are assumed to come from a nor-mal distribution for which both the mean and the variance are unknown.In contrast to the usual Bayesian decision theoretic methodology, whichassumes a single decision maker, our method recogni...

متن کامل

Non-parametric estimation of ROC curve

Receiver operating characteristic (ROC) curve is widely applied in measuring discriminatory ability of diagnostic or prognostic tests. This makes ROC analysis one of the most active research areas in medical statistics. Many parametric and semiparametric estimation methods have been proposed for estimating the ROC curve and its functionals. In this paper, we propose a fully nonparametric Bayesi...

متن کامل

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2012